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Abstract—We propose a simple stochastic process for modeling
improper or noncircular complex-valued signals. The process is a
natural extension of a complex-valued autoregressive process, ex-
tended to include a widely linear autoregressive term. This process
can then capture elliptical, as opposed to circular, stochastic oscil-
lations in a bivariate signal. The process is order one and is more
parsimonious than alternative stochastic modeling approaches in
the literature. We provide conditions for stationarity, and derive
the form of the covariance and relation sequence of this model. We
describe how parameter estimation can be efficiently performed
both in the time and frequency domain. We demonstrate the prac-
tical utility of the process in capturing elliptical oscillations that
are naturally present in seismic signals.

Index Terms—Time series analysis, autoregressive processes,
parameter estimation, maximum likelihood estimation, spectral
analysis, seismic measurements.

I. INTRODUCTION

COMPLEX-VALUED stochastic processes are useful mod-
els for parameterizing bivariate signals. Such models are

in widespread use in applications including oceanography [1]
and functional Magnetic Resonance Imaging [2]. The theory for
complex-valued representations has been developed both in the
context of stochastic processes [3], as well as for signal pro-
cessing [4], with notable recent developments in [5] and [6].
The complex-valued representation is sometimes preferred to
the bivariate representation, due to its compactness and inter-
pretability [7]. For example, complex-valued signals can be nat-
urally decomposed into analytic and anti-analytic signals [8],
and provide a practical framework for assessing impropriety or
noncircularity in a complex signal [9]. On the other hand, the bi-
variate vector representation can provide better physical under-
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Fig. 1. Seismic traces from the Feb. 9th, 1991 Solomon Islands earthquake as
measured from the Pasadena recording station in California. The radial compo-
nent, Xt , is displayed in (a) and the vertical component, Yt , is displayed in (b).
In (c) we display the complex-valued signal, Zt = Xt + iYt , from 16:31:55 to
16:44:35 (UTC), as indicated by the vertical dashed boundaries in (a) and (b).

standing of the generating mechanism of the modeled process,
and its usage is commonplace in the time series community, see
e.g. [10, Ch. 10–11].

The complex autoregressive process [11], [12] is a gen-
eralization of a real-valued autoregressive process, in which
the autoregressive coefficients and noise increments are both
complex-valued. Typically, the real and imaginary components
of the noise are assumed to be independent and identically dis-
tributed [12], thus creating statistically isotropic (i.e. circular)
oscillations in the signal. The process is therefore said to be sta-
tistically circular or proper, defined subsequently, as opposed
to one that is noncircular or improper.

In many real-world observations of complex-valued signals,
noncircular or improper structure is expected to be present; ex-
amples include seismic traces [13], oceanographic velocity mea-
surements [14], and wind measurements [5]. In Fig. 1, we dis-
play a bivariate signal from a seismic trace of the 1991 Solomon
Islands Earthquake, previously studied in [15]–[17]. In Fig. 1(c),
the elliptical orbital shape of the oscillations become apparent
when viewed in the complex plane, and we will refer to such
motion as “elliptical oscillations.” In cases such as these, in
which the signal appears improper, a proper process would be
a poor choice of model and would fail to summarize important
characteristics of the data.

Motivated by this, in this paper we generalize the complex
autoregressive processes to a widely linear complex autoregres-
sive process that is statistically improper or noncircular. The
notion of wide linearity was introduced in [18], and we use this
concept to relate the complex-valued process Zt to its previous
value Zt−1 and its complex conjugate Z∗

t−1 . Our process is or-
der one and hence Markovian, such that Zt is not dependent on
Zt−k (given Zt−1) for k > 1, and is a special case of the widely
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linear autoregressive moving average (ARMA) model of [19].
The widely linear ARMA is a general and flexible framework
for improper processes that is well understood in the context
of signal prediction [19], [20], and signal estimation [21], in
settings where parameter values are assumed to be known. In
practice, these parameters would need to be estimated when
modeling real-world signals.

In this paper, we provide time- and frequency-domain tech-
niques for estimating the parameters of our order one widely
linear process, where we will also derive the form of the covari-
ance and relation sequences. A key innovation will be to relate
the process to a real-valued bivariate vector autoregressive pro-
cess, which will provide intuitive understanding of the process
generating mechanism, and will simplify the problem to the
estimation of five real-valued parameters. We will demonstrate
that despite its simplicity, the model we propose can effectively
capture the elliptical oscillatory structure present in the seismic
signal displayed in Fig. 1.

We contrast our widely linear process with the improper com-
plex autoregressive process of [12], [22], where the impropriety
is created using improper noise. We will demonstrate how the in-
clusion of a widely linear autoregressive component allows our
process to reproduce stochastic elliptical oscillations despite be-
ing order one, whereas to generate elliptical oscillations in the
framework of [12], an order two process is required, as inves-
tigated in [23]. We propose our order one process as a simpler
and more intuitive model for generating elliptical oscillations in
a complex-valued signal.

II. BACKGROUND

Consider a zero-mean complex-valued stationary stochastic
process Zt where t ∈ Z. The covariance sequence, sτ , and the
relation sequence, rτ , are defined at lag τ ∈ Z by

sτ = E{ZtZ
∗
t+τ }, rτ = E{ZtZt+τ },

where E{·} denotes expectation and Z∗
t is the complex conju-

gate of Zt . The process Zt is said to be proper if

rτ = 0, ∀τ ∈ Z,

and is improper otherwise. A proper process therefore has a
relation sequence equal to zero, and is also commonly referred
to as a circular process [4]. It can be shown that the second-
order statistical properties of a proper process are isotropic, such
that its distribution is invariant to rotation. Second-order proper
processes can be treated much like second-order real-valued
processes, in that the second-order properties are fully specified
by the covariance sequence.

The improper complex autoregressive process of [12], [22] is
given by

Zt =
p!

j=1

gjZt−j + νt , gj , νt ∈ C, (1)

where p is the order of the process, and where νt is a noise
process that is permitted to be noncircular or improper. The
coefficients gj are in general assumed to be complex-valued.
An important special case of this process is the proper complex

autoregressive process of order one [11], which we denote by
Z ′

t and has three real-valued parameters {a, θ,σ2
ϵ }, and is given

by

Z ′
t = aeiθZ ′

t−1 + ϵt , a ≥ 0, (2)

where the complex autoregressive coefficient has been ex-
pressed in terms of an amplitude a and phase θ, both real-valued,
where i ≡

√
−1. Here {ϵt} is a sequence of i.i.d. complex-

valued Gaussian noise where the real and imaginary parts are
independent, and each has zero mean and variance given by
σ2

ϵ > 0. The process is stationary if and only if a < 1, with
variance given by 2σ2

ϵ /(1 − a2). In such cases, a is commonly
referred to as the damping parameter. For identifiability a is not
permitted to be negative, as a negative autoregression is achieved
instead when a > 0 and π/2 + 2kπ < θ < 3π/2 + 2kπ, where
k ∈ Z. The parameter θ ∈ R is the angle of a rotation of the
process at each time step and is usually referred to as the spin
parameter [24]. The process Z ′

t is an example of a proper pro-
cess, and we will refer back to this process when we construct
our widely linear improper process.

The improper complex autoregressive model (1) was gen-
eralized to a class of autoregressive moving average (ARMA)
models in [19], which uses finite-length widely linear filters on
both the autoregressive and noise components such that

Zt =
p!

j=1

gjZt−j +
p!

j=1

hjZ
∗
t−j +

q!

j=0

kj ϵt−j +
q!

j=0

lj ϵ
∗
t−j .

(3)
This more general framework has larger flexibility in modeling
improper signals. A challenge however is that as {gj , hj , kj , lj}
are complex-valued, then the number of parameters that need to
be estimated is large, even for moderate values of p and q. In
this paper we shall focus on the special case of p = 1 and q = 0
in (3), thus creating a simple order-one widely linear improper
process.

Finally, [12] more generally show that any second-order sta-
tionary process can be expressed as a widely linear filter of a
complex-proper white noise process ϵt such that

Zt =
∞!

j=−∞
kj ϵt−j +

∞!

j=−∞
lj ϵ

∗
t−j , kj , lj , ϵt ∈ C. (4)

This is in essence the complex-analogue to the well-known Wold
decomposition for real-valued processes [25], and in general this
will be an infinite-order process.

III. THE WIDELY LINEAR COMPLEX AUTOREGRESSIVE

ORDER ONE PROCESS

In this section we introduce the widely linear complex autore-
gressive process of order one. We do this by extending (2) to a
widely linear form for the autoregressive and noise components
of the process, such that it is parameterized by seven real-valued
parameters. We will subsequently reduce this model to five free
parameters, by constraining two parameters, for practical rea-
sons that we shall discuss shortly.

We call our process the widely linear complex autoregressive
process of order one, denoted by Zt , which has parameters
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{! ,α, γ,φ,σ2
ν , cν }, and is given by

Zt = ! eiαZt−1 + γeiφZ∗
t−1 + νt , ! , γ ≥ 0, (5)

where {νt} is a sequence of i.i.d. complex-valued Gaussian
noise with variance σ2

ν = E{νtν∗
t } > 0 and relation at lag zero

specified by cν = E{νtνt} ∈ C. The noise process νt is speci-
fied by three real-valued parameters as cν is in general complex-
valued, therefore our process has seven real-valued parameters.
The remaining four parameters {! ,α, γ,φ} define an iterative
relationship between the process Zt and the previous value Zt−1
as well as its conjugate Z∗

t−1 , where γ and φ are respective ana-
logues of the damping parameter, ! , and the spin parameter, α,
in this widely linear setting. Further intuition for each of the
parameters is gained when we derive covariance sequences in
Sections IV.

The widely linear complex autoregressive process of order
one is recovered from the ARMA model (3) of [19] by taking
p = 1 and q = 0. Furthermore, we combine the widely linear
noise term k0ϵt + l0ϵ∗t into the noise process νt , which has
variance σ2

ν = |k0 |2 + |l0 |2 and relation at lag zero cν = 2k0 l0 .
For this reason νt is commonly referred to as doubly white
noise [12], as it is the pointwise superposition of two complex-
proper white noise processes. As we have implicitly chosen the
initial phase angle of the noise, we have for parsimony reduced
the number of real-valued parameters from the eight used in (3)
(with p = 1 and q = 0), to the seven we have defined in (5),
without any loss of generality.

The model (5) introduces wide linearity in the autoregressive
component of an order one process, and allows the process to
map out stochastic elliptical oscillations, as we now demon-
strate. In Fig. 2, we contrast realizations from our process with
an improper order one process (1) from the framework of [12]
using doubly white noise. The model (1) only has impropriety
in the noise component—equivalent to setting γ = 0 in (5). It
is clear from the figure that when the autoregressive coefficient
! is close to unity (in panels (a) and (b)), then the widely linear
complex autoregressive process (5) has a tendency to gener-
ate elliptical oscillations (panel (a)), whereas an improper order
one process (1) generates oscillations that appear to be circular
(panel (b)). This is because the motion (1) is largely determined
by Zt = ! eiαZt−1 , a deterministic component which specifies
a circular oscillation. When ! is low (panels (c) and (d)), then
the noise term νt dominates both signals. As νt is doubly white
noise, then both processes are improper in their distribution, but
neither generate elliptical oscillations that resemble the seismic
traces seen in Fig 1(c)—this can only be generated using (5)
with a larger autoregressive coefficient, and with γ > 0.

In general, the process (5) has seven real-valued parameters,
whereas (2) has three. The additional four parameters in (5)
are present because each component in (2)—the deterministic
autoregressive component and the noise component—has been
given its own improper elliptical structure with two parameters
respectively, one to stretch (γ and |cν |) and one to rotate (φ and
arg{cν }). Here we have defined |cν | as the complex modulus of
cν , and arg{cν } as the complex argument or phase. In practical
problems the four parameters {γ,φ, |cν |, arg{cν }} will be dif-
ficult to identify simultaneously from observed signals. For this

Fig. 2. The solid gray lines are simulated signals (of length 512) from the
widely linear complex autoregressive process (5) in (a) and (c), and from an
order one improper process (1) in (b) and (d). In (a) and (b), the parameters
are ! = 0.99, α = π/6, σ2

ν = 1, and cν = exp(3πi/4)/5. In (c) and (d),
the parameters are ! = 0.297, α = π/6, σ2

ν = 1, and cν = 2 exp(3πi/4)/3.
For the widely linear complex autoregressive process (5) in (a) and (c), we
additionally set γ = 0.099 and φ = −π/4, which are set to zero in (b) and (d)
for the model (1). The dashed lines indicate the second moment ellipses for the
standard deviation, which are calculated from Section IV.

reason we reduce the widely linear process (5) to five free pa-
rameters, effectively making two parameters redundant, which
in our case will be |cν | and arg{cν }. This is achieved by “align-
ing” the elliptical structure of the deterministic autoregression
and the stochastic noise. The appeal of reducing to five param-
eters is that the process will then have the same number of free
parameters as an improper order one linear model (1), but will
produce elliptical oscillations using widely linear forcing (cf.
Fig. 2). The order two process for elliptical oscillations of [23]
in general requires seven real-valued parameters.

To reduce our model to five free parameters, we equate the
process to a bivariate process with elliptical covariance structure.
We start from the complex-proper autoregressive process of
order one (2). We rewrite this process as a bivariate process in
terms of (X ′

t Y ′
t )T , where Z ′

t = X ′
t + iY ′

t ,
"

X ′
t

Y ′
t

#

= aR

"
X ′

t−1

Y ′
t−1

#

+ σϵ

$
ϵ1,t

ϵ2,t

%
, (6)

where,

R =
$

cos θ − sin θ
sin θ cos θ

%
.

It follows that (6) is an isotropic real-valued bivariate vector
process. Here ϵ1,t and ϵ2,t are i.i.d. Gaussian random variables
with mean 0 and variance 1. The matrix R accomplishes a
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rotation by the angle −π < θ ≤ π in the Cartesian plane. For
identifiability we set a ≥ 0 and for stationarity we require a < 1,
as we show in Appendix A. We then construct a new process
(Xt Yt)T , which we call the elliptical bivariate autoregressive
process (of order one), using an elliptical transformation

$
Xt

Yt

%
= QP

"
X ′

t

Y ′
t

#

, (7)

where

Q =
$

cos ψ − sin ψ
sin ψ cos ψ

%
, P =

$ 1
ρ 0
0 ρ

%
,

in which 0 ≤ ψ < π defines the orientation of an ellipse,
and 0 < ρ ≤ 1 defines the eccentricity, 0 ≤ ε < 1, where ε =&

1 − ρ4 . We call this transformation “elliptical” as it first
stretches the X-axis by a factor of 1/ρ, and compresses the
Y -axis by a factor of ρ, before then rotating these axes through
angle ψ. This transformation leads to elliptical statistical prop-
erties, and the process remains stationary for a < 1. This can
be seen by examining the 2 × 2 covariance matrices associated
with (6) and (7) which are respectively given by

E

'
X ′2

t X ′
tY

′
t

X ′
tY

′
t Y ′

t
2

(

=
$

σ2
ϵ

1 − a2

%
I,

and

E

'
X2

t XtYt

XtYt Y 2
t

(

=
$

σ2
ϵ

1 − a2

%
QP 2QT ,

where I is the identity matrix. The covariance matrix of
(X ′

t Y ′
t )T is isotropic or circular, whereas in general the co-

variance matrix of (Xt Yt)T is elliptical with orientation ψ and
ratio of semi-minor to semi-major axis ρ2 .

The elliptical bivariate autoregressive process of order one
is defined by five parameters, namely {a, θ, ρ,ψ,σ2

ϵ }. We now
express the widely linear complex autoregressive process of
order one as Zt = Xt + iYt , and in Proposition 1 we relate the
parameters of this process to those of the elliptical bivariate
autoregressive process to form a five-parameter process.

Proposition 1: Suppose the process (Xt Yt)T is an elliptical
bivariate autoregressive process of order one, as defined in (6)
and (7) by the parameters {a, θ, ρ,ψ,σ2

ϵ }. This process is equiv-
alent to a widely linear complex autoregressive process of order
one (5), specified by Zt = Xt + iYt where

Zt = a

)
cos θ +

i sin θ

2

$
1
ρ2 + ρ2

%*
Zt−1

+
a sin θ

2

$
1
ρ2 − ρ2

%
ei(2ψ− π

2 )Z∗
t−1

+σϵ

)
eiψ

ρ
ϵ1,t + ρei(ψ+ π

2 )ϵ2,t

*
.

The relationship with the parameters {! ,α, γ,φ,σ2
ν } in the spec-

ification of (5) is given in Table I, with the final redundant

parameter, the relation at lag zero cν , specified by

cν = σ2
ϵ

$
1
ρ2 − ρ2

%
ei2ψ = σ2

ν

+ γ

! sin α

,
ei(φ+ π

2 ). (8)

The proof of Proposition 1 is given in Appendix B. Therefore
in order to represent the elliptical bivariate process (7) in terms
of the widely linear complex process (5), we have required to
use only five parameters. We can therefore simply fix cν using
either {a, θ, ρ,ψ,σ2

ϵ } or {! ,α, γ,φ,σ2
ν }, as given in (8). This

equivalence can be verified using the transformations in Table I.
We note that this is how the value of cν was set earlier in Fig 2.

The eccentricity parameter, ε, can also be found in terms of
the widely linear complex process parameters using Table I

ε =
&

1 − ρ4 =

-
2γ

! | sin α| + γ
. (9)

Therefore for the widely linear process to return valid values for
the eccentricity, 0 ≤ ε < 1, we require

γ ≤ ! | sin α|. (10)

Additionally, for the widely linear process to be stationary we
require a =

&
! 2 − γ2 < 1. Therefore from (10) it follows that

a > 0. Then we see that stationarity is guaranteed when ! < 1,
and otherwise for stationarity we require that

γ >
&

! 2 − 1, when ! ≥ 1. (11)

These inequalities also ensure that θ and σ2
ϵ return valid values

when mapping parameters from the complex to bivariate specifi-
cations. Increasing γ increases the eccentricity, until eventually
larger values of γ are not valid. This means that there is a range
of values for γ, which depends on both ! and α, for our five-
parameter process to be valid and stationary. Combining the in-
equalities in (10) and (11) we see that we require ! 2 < 1/ cos2 α
for our process to be valid and stationary. When α = 0, the case
of no spin, then γ = 0 from (10) and we require ! < 1 for sta-
tionarity. However as α increases then interestingly, there are
parameter values for which ! > 1 and the process can still be
stationary, unlike the proper case, although this then requires a
non-zero γ as can be seen from (11).

We gain further insight by analyzing the relationships in
Table I. The first three parameters on each side of the table,
{! ,α, γ} and {a, θ, ρ}, have a direct one-to-one mapping, where
{! ,α} and {a, θ} become identical as ρ → 1 or γ → 0. The pa-
rameters a and ! are monotonic functions of each other, as are
α and θ, which have the same sign in the range (−π,π]. The
bivariate ellipse orientation ψ and the complex-conjugate spin
parameter φ are directly related, but are adjusted depending on
the sign of θ and α. The ratio of the variance parameters, σ2

ν and
σ2

ϵ , is determined by the eccentricity. The effect of each param-
eter can therefore be closely related row-by-row in Table I.

By connecting to a bivariate process, we have gained the
advantages of both specifications: we benefit from the compact-
ness and applicability of a complex representation, and we ben-
efit from the interpretability and physical understanding gained
from a bivariate representation. A particularly useful feature
of complex signals is that we can perform hypothesis tests for
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TABLE I
THIS TABLE PROVIDES A MAPPING BETWEEN THE PARAMETERS OF THE ELLIPTICAL BIVARIATE PROCESS OF ORDER ONE (7), AND THE WIDELY LINEAR COMPLEX

AUTOREGRESSIVE PROCESSES OF ORDER ONE (5)

We require ! ≥ 0, −π < α ≤ π , γ ≥ 0 and σ 2
ν > 0 for the widely linear complex process, and a ≥ 0, −π < θ ≤ π ,

0 < ρ ≤ 1 and σ 2
ϵ > 0 for the elliptical bivariate process. The parameters φ and ψ are unrestricted in this mapping. The

function atan2 is the four quadrant inverse tangent, acos is the inverse cosine function and sgn is the signum function. These
functions are chosen to ensure that α and θ have a one-to-one mapping in the range (−π , π ].

impropriety [9], and we will demonstrate the insight gained from
such an analysis in our seismic data example in Section VI.

IV. COVARIANCE AND RELATION SEQUENCE

In this section we compute the covariance and relation se-
quences for the widely linear complex autoregressive process
of order one. It follows directly from (5) that the process is
Gaussian, as it is a linear combination of complex-valued Gaus-
sian random variables. Therefore the covariance and relation se-
quences fully specify the process. These sequences would have
complicated expansions if expressed analytically, so instead we
find recurrence relationships between the lags. First we find that
the variance (σ2

Z ) and relation at lag zero (cZ ) are given by

σ2
Z = E{ZtZ

∗
t }

= E
./

! eiαZt−1 + γeiφZ∗
t−1 + νt

0

×
/
! e−iαZ∗

t−1 + γe−iφZt−1 + ν∗
t

01

= (! 2 + γ2)σ2
Z + ! γei(α−φ)cZ + ! γei(φ−α)c∗Z + σ2

ν ,
(12)

cZ = E{ZtZt}

= E
./

! eiαZt−1 + γeiφZ∗
t−1 + νt

0

×
/
! eiαZt−1 + γeiφZ∗

t−1 + νt

01

= 2! γei(α+φ)σ2
Z + ! 2e2iαcZ + γ2e2iφc∗Z + cν . (13)

We now combine (12) and (13) to solve for σ2
Z and cZ , yielding

2

3
σ2

Z
cZ

c∗Z

4

5 =

2

3
! 2 + γ2 ! γei(α−φ) ! γei(φ−α)

2! γei(α+φ) ! 2e2iα γ2e2iφ

2! γe−i(α+φ) γ2e−2iφ ! 2e−2iα

4

5

×

2

3
σ2

Z
cZ

c∗Z

4

5 +

2

3
σ2

ν

cν

c∗ν

4

5 (14)

and hence
2

3
σ2

Z
cZ

c∗Z

4

5 = M−1

2

3
σ2

ν

cν

c∗ν

4

5 , (15)

where

M =

2

3
1 − ! 2 − γ2 −! γei(α−φ) −! γei(φ−α)

−2! γei(α+φ) 1 − ! 2e2iα −γ2e2iφ

−2! γe−i(α+φ) −γ2e−2iφ 1 − ! 2e−2iα

4

5 .

The analytic form for the inverse matrix M−1 in (15) is
provided as part of the online software available at http://
ucl.ac.uk/statistics/research/spg/software
and is not included here for space considerations. When
simulating signals from the process, in addition to satisfying
the inequalities specified in (10), then for the process to be
stationary we require that the first observation is generated
from the complex-valued normal distribution with mean zero,
variance σ2

Z , and relation at lag zero cZ . See Section V-A for
more detail on the complex-valued normal distribution. This is
how the signals in Fig. 2 have been simulated, and more details
on this can be found in the supporting online code.

After computing σ2
Z and cZ from (15), the covariance se-

quence, sτ , and the relation sequence, rτ , can be found for any
τ > 0 using the following recurrence relationships

sτ = E
.
ZtZ

∗
t+τ

1

= E
.
Zt

/
! e−iφZ∗

t+τ−1 + γe−iφZt+τ−1 + ν∗
t+τ−1

01

= ! e−iαsτ−1 + γe−iφrτ−1 , (16)

rτ = E {ZtZt+τ }

= E
.
Zt

/
! eiφZt+τ−1 + γeiφZ∗

t+τ−1 + νt+τ−1
01

= ! eiαrτ−1 + γeiφsτ−1 . (17)

Therefore, after solving for s0 = σ2
Z and r0 = cZ , we iterate

to find sτ and rτ using (16) and (17). To find the sequences
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for negative lags we use the simple relationship s−τ = s∗τ and
r−τ = rτ .

From (16) and (17) we see that ! and α contribute to the
exponential decay of the autocovariance—this is expected as
autoregressive processes are short memory. Conversely, γ and
φ have a “flipping” effect on sτ and rτ , where the covariance is
dependent on the relation at previous lags and vice-versa. This
is a consequence of the widely linear form in (5), where the
conjugate action creates an iterative ‘flip’ of the process about
the real axis in the complex plane.

V. METHODS FOR ESTIMATING PARAMETERS

In this section we detail how the parameters of the widely
linear complex autoregressive process of order one can be esti-
mated from an observed signal using maximum likelihood. We
first resolve the exact form of the likelihood in Section V-A, and
then provide an approximate method in the frequency domain
in Section V-B. The latter method has practical advantages in
real-world applications, as we shall discuss.

A. Maximum Likelihood

Suppose that Zt follows a stationary widely linear complex
autoregressive process or order one, as specified in (5) with
parameters satisfying (10) and (11), then the probability distri-
bution of Zt follows a complex-valued normal distribution. For
a general complex-valued normally distributed random variable
z, we denote its distribution by NC(µ,σ2 , c), with mean µ,
variance σ2 , and relation at lag zero c. The probability density
function of z is then given by

p(z) =
1

π
&

(σ2)2 + |c|2

× exp

'

−1
2

/
z∗ − µ∗ z − µ

0
$

σ2 c
c∗ σ2

%−1$
z − µ

z∗ − µ∗

%(

.

It then follows that the probability distribution of the widely
linear complex autoregressive process or order one, denoted Zt ,
is given by

Zt ∼ NC
/
0,σ2

Z , cZ

0
,

where σ2
Z and cZ are found using (15). For a given observed

signal z0 , . . . , zN −1 from the process Zt , the probability of ob-
serving the first value z0 directly follows from the probability
distribution of Zt ,

p(z0 ;θ) =
1

π
&

(σ2
Z )2 + |cZ |2

× exp

'

−1
2

/
z∗0 z0

0
$

σ2
Z cZ

c∗Z σ2
Z

%−1$
z0
z∗0

%(

,

where θ = {σ2
Z , cZ }. Next we make use of the Markovian prop-

erty of the process to find the conditional distribution of Zt given
Zt−1 = zt−1 , for 1 ≤ t ≤ N − 1

(Zt |Zt−1 = zt−1) ∼ NC
/
! eiαzt−1 + γeiφz∗t−1 ,σ

2
ν , cν

0
,

such that the conditional probability of observing zt given zt−1
is

p(zt |zt−1 ;θ) =
1

π
&

(σ2
ν )2 + |cν |2

× exp

'

−1
2

/
z∗t − µ∗

zt
zt − µzt

0
$

σ2
ν cν

c∗ν σ2
ν

%−1$
zt − µzt

z∗t − µ∗
zt

%(

,

where θ = {µzt ,σ
2
ν , cν } and

µzt = ! eiαzt−1 + γeiφz∗t−1 . (18)

The likelihood of observing the signal z0 , . . . , zN −1 is found by
evaluating

p(z0 , . . . , zN −1 ;θ) = p(z0 ;θ)
N −16

t=1

p(zt |zt−1 ;θ).

The log-likelihood (denoted ℓt(θ)) is therefore

ℓt(θ) = log (p(z0 ;θ)) +
N −1!

t=1

log (p(zt |zt−1 ;θ)) ,

which for a widely linear complex autoregressive process of
order one is found to be

ℓt(θ) = −N log π − N − 1
2

log
/
(σ2

ν )2 + |cν |2
0

−
N −1!

t=1

1
2

/
z∗t − µ∗

zt
zt − µzt

0
$

σ2
ν cν

c∗ν σ2
ν

%−1$
zt − µzt

z∗t − µ∗
zt

%

− 1
2

log
/
(σ2

Z )2 + |cZ |2
0
− 1

2
/
z∗0 z0

0
$

σ2
Z cZ

c∗Z σ2
Z

%−1$
z0
z∗0

%
,

(19)

with µzt given in (18). The optimal parameter choice θ̂ is then
found by maximizing the log-likelihood (19)

θ̂ = arg max
! ∈Θ

ℓt(θ), (20)

where Θ is the permitted parameter range for θ, recalling that
for the five-parameter process, cν is specified by (8), and that
the inequalities (10) and (11) should also be satisfied.

B. Frequency Domain “Whittle” Likelihood

The parameters of the widely linear complex autoregressive
process of order one can also be computed in the frequency
domain using Whittle’s approximation to maximum likelihood
[26], known as the ‘Whittle likelihood.’ This approximation of
the time-domain likelihood is in the frequency domain, and
relies solely on applying Fourier Transforms which can be
computed in O(N log N) operations. We use a bias-corrected
form of the Whittle likelihood, which was extended to complex-
valued signals in [27] and is given by

ℓ(θ) = −
!

ω∈Ω

.
log (|f(ω;θ)|) + JH (ω)f−1(ω;θ)J(ω)

1
,

(21)
where Ω is the set of Fourier frequencies used in the estimation,
θ is the unknown parameter vector, and J(ω) and f(ω;θ) are
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given by

J(ω) =
1√
N

N −1!

t=0

$
Zt

Z∗
t

%
e−iω t , (22)

f(ω;θ) =

"
S̄(ω;θ) R̄(ω;θ)
R̄∗(ω;θ) S̄(−ω;θ)

#

. (23)

The vector J(ω) is the Discrete Fourier Transform for a sig-
nal Z0 , . . . , ZN −1 , evaluated at the Fourier frequencies. The
matrix f(ω;θ) contains the expected periodogram, S̄(ω;θ) =
E{|J(ω)|2}, and the expected complementary periodogram,
R̄(ω;θ) = E{J(ω)J(ω)}, and is dependent on both the signal
length N , and the parameter vector θ. Expected periodograms
are used in (21), rather than theoretical spectral densities, as
this removes the known bias effects from using Discrete Fourier
Transforms in (21) for finite N . We then compute S̄(ω;θ) and
R̄(ω;θ) directly from the covariance and relation sequences
using the relationships

S̄(ω;θ) =
N −1!

τ =−(N −1)

sτ (θ)
$

1 − |τ |
N

%
e−iωτ , (24)

R̄(ω;θ) =
N −1!

τ =−(N −1)

rτ (θ)
$

1 − |τ |
N

%
e−iωτ . (25)

The expected complementary periodogram R̄(ω;θ) will in gen-
eral be a complex-valued quantity. The usefulness of (24) and
(25) is that they can be computed inO(N log N) time as they are
Discrete Fourier Transforms, ensuring the Whittle likelihood re-
mains an O(N log N) procedure in this bias corrected version.
This method is proven to be statistically consistent in [28], and
is shown to significantly remove bias effects for sample sizes as
large as 1,000 data points.

For the widely linear complex autoregressive process of order
one, sτ and rτ in (24) and (25) are computed using the recur-
rence relationships given in Section IV, which is an O(N) com-
putation. Both f(ω;θ) and J(ω) are then computed using Fast
Fourier Transforms, thus giving O(N log N) efficiency overall.
The optimal parameter choice θ̂ is then found by maximizing
the Whittle likelihood in the same way as (20).

The advantage of performing maximum likelihood in the fre-
quency domain is that we can restrict the range of frequencies
used in the summation in (21). This allows the parameter esti-
mation to be performed semi-parametrically, by ignoring fre-
quencies that are known to be contaminated or not specified well
by the model. For example, this was used in [29] to remove the
effect of eddies when estimating the parameters of a turbulent
flow model for the ocean surface. We will also employ such
semi-parametric procedures in our data example in Section VI.

We note that the Whittle likelihood can be alternatively used
with tapered spectral estimates in (22), where the triangle ker-
nel 1 − |τ |/N in (24) and (25) is then replaced with a modified
kernel of smaller width, as documented in [28]. Tapering the
likelihood helps reduce mean square error in parameter esti-
mates when the process is long memory or has steep spectral
slopes. As the widely linear complex autoregressive process of

order one is short memory, then tapering is unnecessary and we
use the periodogram approach defined in (21)–(25).

VI. APPLICATION TO SEISMIC DATA

In this section we investigate using the widely linear complex
autoregressive process of order one as a model for seismic
data. We analyze the seismic trace from the Feb 9th 1991
Solomon Islands earthquake, as presented in Fig. 1 in Section I.
The data is sampled every second and is freely available
from http://ds.iris.edu/wilber3. All the results in
this section (and all figures in this paper) are exactly repro-
ducible with MATLAB code available from http:// ucl.
ac.uk/statistics/research/spg/software.

The seismic trace consists of three components: a radial, verti-
cal, and transverse signal [30]. We model the radial and vertical
components as a complex-valued signal, as they are strongly
coupled due to the presence of a Rayleigh wave. We do not ana-
lyze the transverse component as the expression of the Rayleigh
wave does not exist in the transverse signal [17]. The radial,
Xt , and vertical, Yt , signal are displayed in Fig. 1(a) and (b) re-
spectively. Our analysis will first focus on the segment between
the dashed vertical lines in the figure. We combine these signals
within this partition to form a single complex-valued signal,
Zt = Xt + iYt , as displayed on the complex plane in Fig. 1(c).
The signal has evident improper structure, as can be seen from
the elliptical paths of the signal in the complex plane.

We first fit the widely linear complex autoregressive process
of order one to the entire signal displayed in Fig. 1(c) using the
Whittle likelihood, as detailed in Section V. The periodogram
of the data, and the resulting model fit of the periodogram,
are displayed in Fig. 3(a). For all parameter estimates in
this section, we perform the Whittle likelihood estimation
semi-parametrically over a reduced range of frequencies,
ω ∈ [−π/4,π/4], as the signal energy is strongly concentrated
within this frequency range. For complex-valued signals, the
spectrum is defined at both negative and positive frequencies,
and will in general be asymmetric. The two peaks of different
magnitude on each side of the spectra, at approximately the
same frequency, indicate elliptical oscillatory motion. Our
fitted process has located the frequency of these peaks, but
overall is a poor fit to the periodogram. This is due to the
nonstationarity of the signal. Inspecting Fig. 1(c) in more detail
we can see that the amplitude, eccentricity and orientation of
the elliptical oscillations are changing in time. Our model,
which is stationary, is not able to capture this variable structure.

To investigate these nonstationary effects we separately ana-
lyze two segments of the data, each 161 seconds (or data points)
long, spanning the periods 16:33:46 to 16:36:26 and 16:38:19 to
16:40:59 (UTC) respectively. The complex-valued signals cor-
responding to these time periods are displayed in Fig. 3(b). The
choice of window length is motivated by the example signal it-
self, and has been selected such that it is as short as possible (to
capture as much time variability as possible), while still being
able to robustly estimate all five free parameters. For automated
windowing procedures we refer the reader to [31], which is out-
side the scope of this paper. The periodograms and model fits
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Fig. 3. Panel (a) displays the periodogram (—) and model fit (- - -) of the signal
Zt displayed in Fig. 1(c). Panel (b) shows Zt in the interval (UTC) 16:33:46 to
16:36:26 (—) and 16:38:19 to 16:40:59 (—). The periodogram (—) and model
fit (- - -) are displayed for Zt in the intervals (c) 16:33:46 to 16:36:26 and (d)
16:38:19 to 16:40:59. In (a), (c), and (d), parameter estimation is performed
for ω ∈ [−π/4, π/4], as indicated by the vertical dashed boundaries, and we
extend the fitted lines to all frequencies (– . –).

of each segment are displayed in Fig. 3(c) and (d). The pro-
cess is now seen to be a good fit to these shorter signals. The
optimal parameters are significantly different for each segment.
For example, the eccentricity estimate in the first segment is
0.29 whereas in the second segment it is 0.56. These differing
eccentricity estimates are related to the different ratios of the
amplitudes of the two peaks in each respective periodogram.

The appropriateness of our process to modeling shorter seg-
ments of this signal suggests that a locally stationary modeling
assumption should be used, see e.g. [32]. To investigate this in
more detail we perform the model fit to a rolling 161-second
window over the entire signal.

In Fig. 4(a) and (b) we plot the spectrogram of the data—
that is, a moving window of the periodogram—together with
the spectrogram of the expected periodogram from our model
fit. These spectrograms are only shown for the frequencies that
have been used in the fit. Note that the zero frequency is not
included in the fit as we have removed the sample mean for
each segment. From the figure it can be seen that the widely
linear complex autoregressive process of order one captures the
overall shape of the spectrum at each time slice, as well as its
evolution over time. In particular, the process has captured the
gradually changing frequency of the oscillations.

We also display, in Fig. 4(c) and (d), the time-frequency
plots for the magnitude of the complementary periodogram, and
the resulting model fit (respectively). The complementary peri-
odogram forms a Fourier pair with the sample relation sequence,
and as a consequence complementary periodograms from ob-
served improper processes are expected to exhibit noticeable
structure. This structure has been captured well in the model fit,
which is important, as the complementary periodogram is where

Fig. 4. Spectrograms using a 161-second sliding window of the seismic signal
of Fig. 1. Panel (a) is the evolving periodogram of Zt , (b) is the evolving model
fit to the periodogram using our widely linear process, (c) is the magnitude of
the evolving complementary periodogram of Zt and (d) is the magnitude of the
evolving model fit to the complementary periodogram. The color scale is given
in decibels.

Fig. 5. Estimates of (a) the eccentricity, ε, and (b) the orientation, ψ , in
radians, of the seismic signal of Fig. 1. (—) are the estimates from fitting a
widely linear complex autoregressive process of order one across a 161-second
sliding window, with the 95% confidence intervals given in gray. (- · -) are
the estimates from the method of [33], and (- - -) are the estimates obtained
from the Fourier Transform evaluated at the two frequency peaks. All estimates
and confidence intervals, including the nonparametric techniques, have been
smoothed in time using a moving average window of width 11.

information regarding impropriety—such as the expected ori-
entation of elliptical motion—is contained. The complementary
periodogram is complex-valued, but we have not included plots
for its phase here, for space saving considerations.

In Fig. 5(a) and (b) we display the time-varying eccentricity
and orientation parameters from the model fit, calculated us-
ing Table I and (9). Other informative time-varying summaries
can also be found, such as of the noise variance or damping
terms. These can be generated as part of the online software.
In Fig. 5 we compare with two alternative methods. First we
compare against results obtained from the nonparametric deter-
ministic approach of [33], which models the signal as a time
varying ellipse, thus providing a good comparison to our re-
sults despite being a complementary approach. Secondly, we
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compare against a simple nonparametric approach of compar-
ing the Fourier transform at the positive and negative frequency
peaks in the power spectral density, which we denote as ±ωmax ,
where it can be readily shown that eccentricity and orientation
estimates can be obtained from

ε̂ =
2
&
|JZ (ωmax)JZ (−ωmax)|

|JZ (ωmax)| + |JZ (−ωmax)|

ψ̂ =
1
2

[arg{JZ (ωmax)} + arg{JZ (−ωmax)}] ,

with JZ (ω) defined as the top row of (22). In Fig. 5, the estimated
eccentricities and orientations broadly agree across the different
methods. The values obtained from our parametric model are
in general smoother, as the method smooths over information
across frequencies when estimating parameters. The usefulness
of our stochastic process is that it prescribes a generating mech-
anism providing physical insight and the ability to simulate new
signals from the model, which the alternative purely diagnostic
metrics do not provide.

Another useful feature of a stochastic modeling approach is
that we can calculate confidence intervals for parameter esti-
mates, by numerically computing the Hessian of the Whittle
likelihood, as detailed in [29]. In Fig. 5 we include the 95%
confidence intervals for our parameter estimates, where care
must be taken when assessing significance across time as these
are not pointwise simultaneous confidence intervals.

Finally, another advantage of the stochastic modeling ap-
proach is that we can perform a parametric hypothesis test for
impropriety, to test for statistical significance for when an im-
proper model should be used. This approach is simpler than
performing the test of [9], under the assumption that the para-
metric model is appropriate. We perform the parametric test by
also fitting the proper complex autoregressive order one pro-
cess (2) to rolling windows of observations, in exactly the same
manner as performed for the widely linear improper process.
We then perform a likelihood ratio test, as proposed in [27], to
see if there is significant statistical evidence to suggest the null
hypothesis of a proper process should be rejected in favor of an
improper process. To do this we compute the likelihood ratio
statistic, given by W = 2{ℓ(θalt) − ℓ(θnull)}, where “alt” and
“null” denote the alternative and null models respectively. We
compare the likelihood ratio statistic with the 95th percentile of
a χ2

2 distribution. The χ2
2 distribution is used because there are

two additional parameters in the alternate than in the null.
The results of the test are displayed in Fig. 6, where we have

extended the analysis and computed W over a longer period
of time. Similarly to Fig. 5, care must be taken here when
performing such an analysis over time, as a correction must be
made for multiple testing, to control the rate of false positives. As
a result, we have divided the analysis into 11 non-overlapping
windows, as indicated, and reported the likelihood ratio test
statistic within each window. Then to control the rate of false
positives, rather than rejecting all segments with p-values less
than .05 (found using the χ2

2 distribution), a False Discovery
Rate (FDR) procedure is applied using the Benjamini-Hochberg
procedure [34]. This procedure ranks the p-values in ascending

Fig. 6. The likelihood ration statistic W (—) over time, smoothed with a
moving average window of width 11, from fitting the proper (2) and widely
linear improper (5) complex autoregressive order one processes to Zt across a
161-second sliding window. The signal is then divided into 11 non-overlapping
windows, as indicated by the vertical gray-dashed lines, where the vertical
black solid lines indicate the analysis window of Figs. 4–6. The likelihood ratio
statistic for each of these windows is then given by the horizontal black lines. We
also display the 95th percentile of a χ2

2 distribution (– – –), and after applying
a False Discover Rate (FDR) procedure to control the rate of false positives, we
reject propriety in each segment except the first two.

order (denoted p1 , . . . , p11) and finds the largest j such that
pj ≤ .05j/11, and then rejects all segments corresponding to
p1 , . . . , pj . This procedure formally requires data segments to
be independent, and while mild correlations do exist, these can
only result in positive correlations between the statistics (as
χ2

2 distributions can only be positively correlated). Therefore
we may still employ this procedure, but the rejection rate is
conservative.

The FDR analysis, which is included in the online code,
rejects all but the first two segments, which have the highest
associated p-values and are before the arrival of the Rayleigh
wave. Propriety is rejected within our main analysis window of
Figs. 4–6, and also afterwards where there is still some seismic
activity (as can be seen in Fig. 1). We can see that the rejection of
propriety in favor of our model is most significant at time points
where the signal is most eccentric, around 16:40 (cf. Fig. 5(a)),
which is intuitive as here a circular/proper model is the least
appropriate.

VII. CONCLUSION

In this paper we have proposed a widely linear complex
autoregressive process of order one. The key novelty of the
stochastic process is that impropriety is constructed by relat-
ing the process to its conjugate at the previous timestep using a
widely linear representation, building on ideas developed in [19]
for higher order ARMA processes. Our approach is in contrast
to alternative approaches to modeling improper complex autore-
gressive processes, where only the noise component is improper.
Our stochastic process can generate improper structure in the
form of elliptical oscillations, which is not possible using alter-
native order one processes in the literature.

We reduced the specification of our process from seven free
parameters to five free parameters, by relating the process to
a bivariate elliptical process with interchangeable parameters,
and “aligning” the ellipticity of the signal and noise. Reduc-
ing to five free parameters has the advantage that parameters
of our process are easier to identify and estimate in real-world
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problems. Furthermore, linking to a bivariate process provided
the benefits of using both representations, where we were then
able to find conditions for stationarity, and describe the structure
of the elliptical oscillations. In general the parameter connec-
tions between the representations are non-trivial, but transform-
ing between representations provided useful insight, shedding
light on the behavior of the more compact complex widely linear
representation.

A promising direction for gaining insight into the full uncon-
strained seven-parameter widely linear specification, is to relate
the process to a bivariate process with two separate elliptical
transforms—one each for the autoregressive and noise compo-
nents in (6)—thus also now being specified by seven parameters.
Such an analysis should be performed if the problem is known
to have elliptical signal and noise structure that is not aligned.

Another important innovation of this paper is that we have
provided time- and frequency-domain techniques to parame-
ter estimation, and then applied them to demonstrate how our
widely linear improper process can effectively capture ellip-
tical oscillations in observed seismic traces. An advantage of
the complex-valued approach is that frequency-domain under-
standing then becomes natural, as the asymmetry in the power
spectra defines preferred direction of rotation. The process we
propose has the potential to be applied to other improper signals
in numerous applications, including for example modeling el-
liptical eddies as documented in [14], or modeling phase-shifted
stochastic cycles in econometric time series [35].

APPENDIX A
STATIONARITY OF THE BIVARIATE ELLIPTICAL

AUTOREGRESSIVE PROCESS

From [36, Ch. 11] we have that for (6) to be stationary we
require that the eigenvalues of the matrix

aR =
$

a cos θ −a sin θ
a sin θ a cos θ

%

have modulus less than one. The eigenvalues of this matrix are
found to be

! 1 = a cos θ + ia sin θ, ! 2 = a cos θ − ia sin θ.

Therefore as |! 1 | = |! 2 | = a, it follows that requiring both
|! 1 | < 1 and |! 2 | < 1 for stationarity is equivalent to requir-
ing that a < 1 (as we already have that a ≥ 0).

APPENDIX B
PROOF OF PROPOSITION 1

Combining (6) and (7) we have the relationship
$

Xt

Yt

%
= QP

'

aR

"
X ′

t−1

Y ′
t−1

#

+ σϵ

$
ϵ1,t

ϵ2,t

%(

,

and then substituting (X ′
t−1 Y ′

t−1)T for (Xt−1 Yt−1)T , and using
that Q−1 = QT , it follows that

$
Xt

Yt

%
= QP

)
aRP−1QT

$
Xt−1
Yt−1

%
+ σϵ

$
ϵ1,t

ϵ2,t

%*
. (26)

To simplify (26) we first define

I =
$

1 0
0 1

%
, J =

$
0 −1
1 0

%
, K =

$
0 1
1 0

%
.

It then follows that

PRP−1 = cos θI +
sin θ

2

$
1
ρ2 + ρ2

%
J

− sin θ

2

$
1
ρ2 + ρ2

%
K.

We then use the properties that

QIQT = I, QJQT = J, QKQT =
$
− sin 2ψ cos 2ψ
cos 2ψ sin 2ψ

%
,

which allows for a simple expression for L = QPRP−1QT

where

L = cos θI +
sin θ

2

$
1
ρ2 + ρ2

%
J

− sin θ

2

$
1
ρ2 − ρ2

% $
− sin 2ψ cos 2ψ
cos 2ψ sin 2ψ

%
.

Therefore (26) simplifies to
$

Xt

Yt

%
= aL

$
Xt−1
Yt−1

%
+ QPσϵ

$
ϵ1,t

ϵ2,t

%
. (27)

To reformulate this in terms of Zt = Xt + iYt we use the rela-
tionship

$
Xt

Yt

%
=

1
2
T

$
Zt

Z∗
t

%
, where T =

$
1 1
−i i

%
. (28)

Substituting (28) into (27) and using that TH T = 2I , where the
subscript H denotes the Hermitian transpose, after rearranging
we see that

$
Zt

Z∗
t

%
=

a

2
TH LT

$
Zt−1
Z∗

t−1

%
+ TH QPσϵ

$
ϵ1,t

ϵ2,t

%
. (29)

Expanding (29) and taking the top row we then get the relation-
ship given in the proposition.
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