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One Object, Two Domains
In the last lecture we saw that any time series can be represented in
terms of its Fourier transform.

The time series and its Fourier transform are linked, like the way an
object is linked to its mirror image.

We can say that we are seeing the same object, represented in either
the time domain, or the frequency domain.

Any modification we make to a time series will have will also modify
in some way its Fourier transform.

In other words, changes in the time domain are reflected by
corresponding changes in the frequency domain, and vice-versa.
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The Nature of the Link
However, the nature of the link between the time domain and the
frequency domain is rather subtle.

The way a modification in one domain is represented in the other
domain is not initially obvious.

For example, if we differentiate a time series with respect to time,
that is not the same as differentiating its Fourier transform with
respect to frequency.

Similarly, if you hold an object in front of a mirror, the mirror
accurately represents the object, but in a modified way. As you
rotate the object, the mirror image also rotates, but in the opposite
direction.

Understanding the way these two domains reflect each other is at
the very heart of Fourier analysis and is the subject of this lecture.
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Orientation
In the last few lectures we have established three fundamental
building blocks for understanding Fourier analysis.

These are the complex exponential or phasor, Euler's Formula, and
the discrete Fourier transform equations:

✧

e
iωt

= cos(ωt) + i sin(ωt)e
iωt

= , ≡ .zn
1

N ∑
m=0

N−1

Zme
i2πmn/N

Zm ∑
n=0

N−1

zne
−i2πmn/N
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Orientation
In the last few lectures we have established three fundamental
building blocks for understanding Fourier analysis.

These are the complex exponential or phasor, Euler's Formula, and
the discrete Fourier transform equations:

Today we will add a fourth building block, the Fourier transform
equations for a time series  that is a function of continuous time:

✧

e
iωt

= cos(ωt) + i sin(ωt)e
iωt

= , ≡ .zn
1
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Zm ∑
n=0

N−1

zne
−i2πmn/N

z(t)

z(t) = Z(ω) dω, Z(ω) ≡ z(t) dt.
1

2π ∫
∞

−∞
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Why Both?
A fair question is why we need to work with both the discrete
Fourier transform and continuous Fourier transform.

Essential conceptual results are much easier to see when we work
with the continuous version, even if the basic idea also applies to
the discrete version.

These continuous Fourer transform equations are the key to
understanding the link between the time domain and the frequency
domain.

However, when we implement things on a computer, we do so using
the discrete version.

Therefore it is important to be familiar with both.
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In­Class Assignments
1. Make an  point array of zeros, place a 100-point

boxcar (100 ones) at its center, and plot the real and imaginary
parts, and absolute value, of its FFT. What do you observe?

2. Repeat #1 but with the boxcar located in the first 100 points, not
the center. What changes?

3. Repeat #1 but with a 200-point boxcar. What changes?
4. Repeat #3 but after multiplying the signal by 

with t=[1:1000]'. What changes? What if instead ?
5. Make an  column vector of zeros, set the point at 500

equal to one, and plot the real part, imaginary part, and
absolute value of its FFT. What do you observe?

6. Repeat #5 but setting a different point to have a value of one.
What changes as you move that point around?

7. Let t=[1:1000]', and let  be a cosine, then choose 
such that  executes one oscillation in 50 time points. Plot the
plot the real part, imaginary part, and absolute value of its FFT.
What do you observe?

8. Repeat #7 but with a  instead. What changes?
9. Repeat #7 but after multiplying  by four. What changes?

✧

N = 1000

x = cos(2πt/20)
x = cos(2πt/5)

N = 1000

x = cos(at) a

x

sin
a
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Continuous Fourier
The Fourier transform equations for a discrete time series  are

The Fourier transform equations for a time series  that is a
function of continuous time are:

Please take a few minutes to look closely at these two equations.
Assess their commonality and differences.

✧

zn

= , ≡zn
1

N ∑
m=0

N−1

Zme
i2πmn/N

Zm ∑
n=0

N−1
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−i2πmn/N

z(t)

z(t) = Z(ω) dω, Z(ω) ≡ z(t) dt.
1

2π ∫
∞

−∞
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∞

−∞

e
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Continuous Fourier
The Fourier transform equations for a discrete time series  are

The Fourier transform equations for a time series  that is a
function of continuous time are:

Please take a few minutes to look closely at these two equations.
Assess their commonality and differences.

These are discrete and continuous expressions of the same basic
idea of representing a time series in terms of sinuosoids.

Differences: sum vs. integral, cyclic vs. radian,  vs. .
✧
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= , ≡zn
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z(t)

z(t) = Z(ω) dω, Z(ω) ≡ z(t) dt.
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∞
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Discrete vs. Continuous
Note we can express the th Fourier frequency equivalently as 

in terms of either cyclic or radian frequencies.

The difference between two successive radian frequencies is 

which is just the Rayleigh frequency expressed in radian units.

Thus, we can write the discrete Fourier transform as

in which form we can better see its connection to the integral.

✧

m

≡ m/N, ≡ 2πm/Nfm ωm

δω ≡ − = 2π/Nωm+1 ωm

= = δω = δωzn
1

N ∑
m=0

N−1

Zme
i2πnf

m

1
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m=0

N−1

Zme
i nωm

1

2π ∑
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N−1

Zme
i nωm
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Discrete vs. Continuous
Rewritten in cyclic frequency, the DFT equations become

The left-hand expression is clearly a summation approximating an
integral over frequency. The right hand expression is a summation
approximating an integral over time, with sample interval .

Comparing these with the continuous Fourier transform equations

we can now see the very close connection between the two sets.

Note that the placement of the  is subject to convention. This
argument shows why it is natural to have the  where it is.

✧

= δω, ≡ .zn
1

2π ∑
m=0

N−1

Zme
i nωm Zm ∑

n=0

N−1

zne
−i nωm

Δ = 1

z(t) = Z(ω) dω, Z(ω) ≡ z(t) dt
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∞
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Note on Transform Validity
Let's take a look at this equation:

Some conditions must be placed on  in order for this to be valid.

If we assume that  is square­integrable

then  is well defined by the Fourier transform, and  can be
reconstructed from  using the inverse Fourier transform.

Note that the Fourier transform does not exist in this usual sense if,
for example,  is a stochastic process that extends to infinity in
both directions.

✧

Z(ω) ≡ z(t) dt.∫
∞

−∞

e
−iωt

z(t)

z(t)

dt < ∞∫
∞

−∞

|z(t)|2

Z(ω) z(t)
Z(ω)

z(t)
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Transform of a Gaussian
It can readily be shown that a Gaussian transforms to a Gaussian:

Notice that the Gaussian width in the time domain, , becomes 
in the frequency domain.

This means that as you make the Gaussian more narrow in time, it
becomes more broad in the frequency domain, and vice-versa.

This is actually a general result.

✧

z(t) = ⟺ Z(ω) = L .e
−

1

2

t
2

L2 2π
‾‾‾√ e

−

1

2
L

2
ω

2

L 1/L
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The Scaling Theorem
Using the inverse Fourier transform equation, if you scale time in a
function , what happens to its Fourier transform?

✧

z(t)

z(t) = Z(ω) dω
1

2π ∫
∞

−∞

e
iωt
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The Scaling Theorem
Using the inverse Fourier transform equation, if you scale time in a
function , what happens to its Fourier transform?

This is a general result that we will call the scaling theorem:

This states that making any function more narrow in the time
domain makes its Fourier transform more broad, and vice-versa.

✧

z(t)

z(t) = Z(ω) dω
1

2π ∫
∞

−∞

e
iωt

z(t/L) = Z(ω) dω = L Z(ω) d(ω/L)
1

2π ∫
∞

−∞

e
iωt/L 1

2π ∫
∞

−∞

e
i(ω/L)t

= L Z(ωL) dω
1

2π ∫
∞

−∞

e
iωt

z(t/L) ⟺ L Z(Lω).
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The Scaling Theorem

Stretching a function in time compresses it in frequency, 
and also increases the frequency-domain amplitude.

✧

z(t/L) ⟺ LZ(Lω).
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The Shift Theorem
Using the inverse Fourier transform equation, if you shift a function

 in time, what happens to its Fourier transform?

✧

z(t)

z(t) = Z(ω) dω
1

2π ∫
∞

−∞

e
iωt
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The Shift Theorem
Using the inverse Fourier transform equation, if you shift a function

 in time, what happens to its Fourier transform?

Thus, the effect in Fourier domain of a time shift is to modify the
phases of the Fourier transform without changing its magnitude.

Such an action is called a phase modulation. The word modulate
means to adjust or vary.

This result, the shift theorem, can be compactly expressed as

✧

z(t)

z(t) = Z(ω) dω
1

2π ∫
∞

−∞

e
iωt

z(t − ) = Z(ω) dω = [ Z(ω)] dωto
1

2π ∫
∞

−∞

e
iω(t− )to

1

2π ∫
∞

−∞

e
−iωto e

iωt

z(t − ) ⟺ Z(ω).to e
−iωto
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Time Derivatives
Using the inverse Fourier transform equation, if you take a time
derivative of , what happens to its Fourier transform?

✧

z(t)

z(t) = Z(ω) dω
1

2π ∫
∞

−∞

e
iωt
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Time Derivatives
Using the inverse Fourier transform equation, if you take a time
derivative of , what happens to its Fourier transform?

We will call this result the differentiation theorem:

Note that the differentiation theorem readily generalizes

✧

z(t)

z(t) = Z(ω) dω
1

2π ∫
∞

−∞

e
iωt

(t) = z(t) = [ Z(ω) dω]z
′

d

dt

d

dt

1

2π ∫
∞

−∞

e
iωt

= Z(ω) [ ] dω = iωZ(ω) dω
1

2π ∫
∞

−∞

d

dt
e
iωt

1

2π ∫
∞

−∞

e
iωt

(t) ⟺ iωZ(ω).z
′

(t) ⟺ (iω Z(ω).z
(n) )n
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Summary So Far
We have learned the scaling theorem, the shift theorem, and the
differentiation theorem:

These three results are fundamental in describing how changes in
the time domain are reflected in the frequency domain.

All of these results are derivable with a few lines of algebra from the
Fourier representation, or inverse Fourier transform equation,

After a while, you can just look at this equation and you can see
those results inside of it.

✧

z(t/L) ⟺ L Z(Lω)

z(t − ) ⟺ Z(ω)to e
−iωto

(t) ⟺ iωZ(ω).z
′

z(t) = Z(ω) dω.
1

2π ∫
∞

−∞

e
iωt

16 / 28

http://www.jmlilly.net/jmlcourse.html


The Delta Function
The Dirac delta function, , is a special type of function that
comes up frequently in Fourier analysis.

One can visualize  as an infinite spike at time , but with an
integated value of one, .

The fundamental property of a delta function is that its product
with another function  integrates to a particular value of :

Thus  plays the role of collapsing the integral, choosing the
value of  at time .

An important detail is that  must be “smooth” in some sense. It
can't be a stochastic process like a random walk, or another delta
function, or a fractal. These vary at infinitesimally small scales.

✧

δ(t)

δ(t) t = 0

δ(t) dt = 1∫ ∞

−∞

f (t) f (t)

δ (t − ) f (t) dt = f ( ).∫
∞

−∞

to to

δ (t − )to
f (t) t = to

f (t)
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Fourier Transform of Delta
If we set  in the inverse Fourier transform, we obtain

using the fundamental property of a delta function. This indicates
that the corresponding forward Fourier transform should be

and this can in fact be proven, but is beyond the scope of this class.

Thus we have identified the Fourier transform pair of a constant
value in the time domain, and a delta function at zero frequency:

You can see this as a special case of the Gaussian pair for .
✧

Z(ω) = 2πδ(ω)

z(t) = Z(ω) dω, 1 = 2πδ(ω) dω
1

2π ∫
∞

−∞

e
iωt

1

2π ∫
∞

−∞

e
iωt

2πδ(ω) = dt∫
∞

−∞

e
−iωt

1 ⟺ 2πδ(ω).

L → ∞
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Deltas and Sinuosoids
Delta functions are important because shifted delta functions are
the Fourier transforms of complex exponentials.

From the fundamental property of a delta function, and setting
 in the inverse Fourier transform, we have

for the Fourier transform of a shifted delta function, or 

Recall that . It follows at once that 

and the Fourier transform of a cosine is the sum of two delta
functions, one at  and one at .

✧

Z(ω) = 2πδ(ω − )ωo

z(t) = Z(ω) dω, = 2πδ (ω − ) dω
1

2π ∫
∞

−∞

e
iωt

e
i tωo

1

2π ∫
∞

−∞

ωo e
iωt

⟺ 2πδ(ω − ).e
i tωo ωo

cos θ = ℜ { } = [ + ]eiθ 1

2
eiθ e−iθ

cos( t) ⟺ πδ (ω + ) + πδ (ω − )ωo ωo ωo

ωo −ωo
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The Convolution Integral
A few days ago we worked with simple smoothing of our discrete
time series , which we represented mathematically as

We might choose  to be constant, for example, to implement a
running mean.

Changing notation slightly, this becomes 

where we have written the continuous-time equivalent on the right.
This is a very important type of operation called a convolution.

✧

zn

=z ̃ n ∑
m=−(M−1)/2

(M−1)/2

zn−m gm

gm

≡ , h(t) ≡ f (t − τ)g(τ) dτ.hn ∑
m=−(M−1)/2

(M−1)/2

fn−m gm ∫
∞

−∞
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The Convolution
“Convolution” is essentially just a fancy name for what we do when
we smooth a time series or take a running mean.

Let  be a time series of interest, and  be smoothing function,
such as a boxcar. Then a smoothed version of  is given by

where the integral in the above is called a convolution. The notation
 is confusing but conventional.

It is easy to see that if  is a rectangle function, the convolution
produces a running mean.

As with the Fourier transform equation, for the convolution integral
to be well-defined, we need to make some conditions on  and 

. It is well-defined if both are square-integrable.

✧

f (t) g(t)
f (t)

h(t) ≡ (f ∗ g)(t) ≡ f (τ)g(t − τ)dτ∫
∞

−∞

(f ∗ g)(t)

g(t)

f (t)
g(t)
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Example of Convolution

This {animation} is from Wikipedia, by Brian Amberg and modified
by Tinos, redistributed under the {CC BY-SA 3.0} license.

✧

(f ∗ g)(t) ≡ f (τ)g(t − τ)dτ∫
∞

−∞
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Another Example

This {animation} is from Wikipedia, by Brian Amberg and modified
by Tinos, redistributed under the {CC BY-SA 3.0} license.

✧

(f ∗ g)(t) ≡ f (τ)g(t − τ)dτ∫
∞

−∞
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Symmetry of Convolution
In convolution, order does not matter. Convolving  with  is
the same as convolving  with . Define  as

With , which implies  and , we find

after changing the limits of integration, i.e. noting . The
variable of integration  can be replaced with with . This shows 

so that in convolution, the order does not matter.
✧

f (t) g(t)
g(t) f (t) h(t)

h(t) ≡ f (τ)g(t − τ)dτ.∫
∞

−∞

u ≡ t − τ du = −dτ τ = t − u

h(t) = − f (t − u)g(u)du = f (t − u)g(u)du∫
−∞

∞
∫

∞

−∞

= −∫ b

a
∫ a

b

u τ

h(t) ≡ f (τ)g(t − τ)dτ = g(τ)f (t − τ)dτ∫
∞

−∞
∫

∞

−∞
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The Convolution Theorem
A key to understanding spectral analysis is to know what happens in
the Fourier domain when you perform a time-domain smoothing.

The convolution theorem states convolving  and  in the time
domain is the same as a multiplication in the frequency domain.

which can be written more compactly as

We see clearly here that order does not matter to the convolution.

The convolution theorem is the single more important result in all
of Fourier analysis. It takes a little while to really sink in.

✧

f (t) g(t)

h(t) = f (τ)g(t − τ)dτ = F(ω)G(ω) dω∫
∞

−∞

1

2π ∫
∞

−∞

eiωt

f (τ)g(t − τ)dτ ⟺ F(ω)G(ω).∫
∞

−∞
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Convolution Proof

✧

h(t) = f (τ)g(t − τ)dτ∫
∞

−∞

= [ F(ω) dω] [ G(ν) dν] dτ∫
∞

−∞

1

2π ∫
∞

−∞

eiωτ
1

2π ∫
∞

−∞

eiν(t−τ)

= F(ω)G(ν) dω dν dτ
1

(2π)2 ∫
∞

−∞
∫

∞

−∞
∫

∞

−∞

ei(ω−ν)τ+iνt

= F(ω)G(ν) [ dτ] dω dν
1

2π ∫
∞

−∞
∫

∞

−∞

eiνt
1

2π ∫
∞

−∞

ei(ω−ν)τ

= F(ω)G(ν) δ(ω − ν)dω dν
1

2π ∫
∞

−∞
∫

∞

−∞

eiνt

= F(ω)G(ω) dω
1

2π ∫
∞

−∞

eiωt

26 / 28

http://www.jmlilly.net/jmlcourse.html


Summary
This class has covered more or less everything you need to know
about Fourier analysis:

All of these are readily derviable from, indeed contained within, the
inverse Fourier transform equation:

✧

z(t/L)

z(t − )to

(t)z′

1

ei tωo

cos( t)ωo

f (τ)g(t − τ)dτ∫
∞

−∞

⟺ L Z(Lω)

⟺ Z(ω)e−iωto

⟺ iωZ(ω)

⟺ 2πδ(ω)

⟺ 2πδ(ω − )ωo

⟺ πδ (ω + ) + πδ (ω − )ωo ωo

⟺ F(ω)G(ω)

z(t) = Z(ω) dω.
1

2π ∫
∞

−∞

eiωt
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Homework
1. The theorems listed on the last page are very important results

for anyone working with spectral analysis. Please commit them
to memory—by which I mean the basic idea, not the symbols.

2. Review the notes and do your best to understand the steps.
3. Fill out as many as you can of the reverse table:

This is most easily done by beginning with the forward Fourier
transform equation .

✧

?

?

?

?

?

?

?

⟺ Z(ω/L)

⟺ Z(ω − )ωo

⟺ (ω)Z
′

⟺ 1

⟺ e
iωto

⟺ cos(ω )to

⟺ F(ν)G(ω − ν)dν∫
∞

−∞

Z(ω) = z(t) dt∫ ∞

−∞
e−iωt
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